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ABSTRACT

A data compression algorithm involving vector quantization (VQ) and the discrete

wavelet transform (DWT) is applied to two different types of multidimensional digital

earth-science data. The algorithm (WVQ) is optimized for each particular application

through an optimization procedure that assigns VQ parameters to the wavelet trans-

form subbands subject to constraints on compression ratio and encoding complexity.

Preliminary results of compressing global ocean model data generated on a Think-

ing Machines CM-200 supereomputer are presented. The WVQ scheme is used in

both a predictive and nonpredictive mode. Parameters generated by the optimiza-

tion algorithm are reported, as are signal-to-noise ratio (SNR) measurements of actual

quantized data. The problem of extrapolating hydrodynamic variables across the con-
tinental landmasses in order to compute the DWT on a rectangular grid is discussed.

Results are also presented for compressing Landsat TM 7-band data using the WVQ

scheme.The formulation of tile optimization problem is presented along with SNR

measurements of actual quantized data. Postprocessing applications are considered

in which the seven spectral bands are clustered into 256 clusters using a k-means

algorithm and analyzed using the Los Alamos mnltispectral data analysis program,

SPECTRUM, both before and after being compressed using the WVQ program.

I. INTRODUCTION.

This work describes the application of an image compression algorithm involving the

discrete wavelet transform and vector quantization to two problems involving earth science

data. The coding of outputs of supercomputer-generated global climate model (GCM) ocean

simulations and Landsat Thematic Mapper (TM) multispectral imagery is investigated. The

compression algorithm has its origins in the coding of gray-scale imagery [1,2]. A set of vector

quantizers is designed (one for each subband in the wavelet decomposition) with parameters

selected from the solution of an optimization problem that is formulated to minimize quanti-

zation distortion with constraints on the overall bit rate and encoding complexity. Although

both data types considered in this work are of dimensionality higher than two, we restrict

the discussion to coding implementations based on 2-D transforms.
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Compression of the GCM data is approached by both a straightforward two-dimensional

extension of the earlier algorithm and a predictive scheme in which two-dimensional pre-

diction residuals are coded. The Landsat images are coded by modifying the bit allocation

algorithm to allocate coder resources simultaneously among all of the spectral components.

For all scenarios, measurements of quantization distortion are presented as functions of

compression ratio and encoding complexity, thus revealing tradeoffs involved in the system

design.

II. MULTIDIMENSIONAL WAVELET TRANSFORM-VECTOR QUANTIZATION.

The data-coding technique used in this work, known as the wavelet vector quantization

(WVQ) algorithm, is based on vector quantization of the subbands resulting from a discrete

wavelet transform (DWT) decomposition of the data signal. For signals in two or more

dimensions, the transform used is based on product filter banks (i.e., tensor products of

one-dimensional DWT filters). A d-dimensional signal transformed in this manner with a

two-channel filter bank yields 26 subbands, any of which can be cascaded back through

the filter bank to produce a multirate decomposition of the original signal. Although we are

currently working on three-dimensional wavelet transforms for use with the three-dimensional

climate model data under investigation, the DWT results presented here are restricted to

the case of two-dimensional data fields.

Single-level 2-D DWT analysis and synthesis filter banks are depicted in Figures 1 and

2. The analysis filters (H_) and synthesis filters (F_) used in this paper are biorthogonal

linear phase FIR wavelet filters constructed in [3, 4]. Note the use of binary subscripts on

the subbands, aij, to indicate the filters applied to the rows and columns of the signal, x.

Signals obtained from sampling smooth, continuous data fields usually have most of their

energy (or variance) concentrated in the low-frequency part of the spectrum, so it is usually

most efficient to cascade only the lowpass-lowpass filtered subband, a00, back through the

analysis bank in Figure 1; the resulting subband is denoted a00,00, or a,o0 for short. This

cascade is typically carried down four levels (or so), to the a,,,oo band, which will then contain

a large portion of the signal energy concentrated in a heavily downsampled signal component.

Note that the downsample factor for an ltClevel subband in a d-dimensional scheme using

an M-channel coder is mi = Mtd, so, e.g., subband a,,,oo in the 2-D decomposition has been

downsampled by rn/= 256-to-1.

A further consideration when applying a DWT to finite-duration signals, like the rows or

cohnnns in a digital image, is the handling of boundary conditions. The most straightforward

way of dealing with signal boundaries is to regard the signal as a single period of an infinite,

periodic input and apply the DWT filter bank by circular convolution and downsampling.

This has the disadvantages, however, of introducing a spurious jump discontinuity when the

data isn't inherently periodic and of constraining the signal length (i.e., its "period") to

be divisible by the downsample factor. For a four-level decomposition using a two-channel

filter bank, for instance, this means the input length, No, must be divisible by 16. Both

of these problems can be avoided by using symmetric extrapolation techniques to extend

finite-duration inputs; moreover, this can be done with no increase in the memory allocation

needed to transform or store the input signal [5, 6].

The design of vector quantizers for the subbands in a DWT decomposition is based on
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Figure 1: Single-Level, Two-Dimensional Wavelet Transform Analysis.
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Figure 2: Single-level, Two-Dimensiona] Wavelet Transform Synthesis.
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the assumptionof exponentialVQ rate-distortion characteristics,

(l)

D_(ki, r_) is the distortion (mean-square error) between the original and quantized data in

the i °_ subband for a bit rate of ri bits per pixel (bpp) and a vector dimension of k_. fl_(ki)

and 7i(ki) are constants that depend on ki and the probability density flmction of the data

vectors. The motivation for this assumption is based on theoretical VQ rate-distortion

modelling [7] and confirmed by empirical data; values for the constants/3,(k,) and 7_(k,) are

determined fi'om a set of training data.

In the case of an orthogonal subband decomposition, the overall distortion can be ex-

pressed as a weighted sum of the distortion in each subband,

t

where rni is the downsample factor, the ratio of the number of samples in the original to

the number in the i °' subband. Since the DWT conserves the number of data samples, 7hi

satisfies the identity _rn_ -_ = 1. By (1), the overall distortion is

Formula (2) is customarily used as a distortion measure with nonorthogonal transforms, too,

although it no longer coincides exactly with overall mean-square error. The bit-allocation

problem for quantizer design involves using nonlinear optimization techniques to compute

the bit rates, ri, and dimensions, /% that minimize (2), subject to constraints on overall bit

rate and encoder complexity.

For a target overall bit rate of R bpp, the constraint on subband bit rates is

. <_R (3)

If subband vector dimensions, ki, are to be optimized, an additional constraint besides

(3) is necessary to obtain a well-posed optimization problem for VQ bit allocation. The

encoder complexity constraint used here is an upper bound, Q, on the computational cost of

performing exhaustive nearest-neighbor searches of ki-dimensional VQ codebooks containing
N, = 2 t'm codevectors:

1 k,r,
}--'_--2 c_ < Q (4)

i 771i

The parameter c_ is a constant corresponding to the arithmetic cost of performing two ad-

ditions and one multiplication per pixeI. With the additional constraints ri _> 0 we obtain a

convex nonlinear optimization problem to solve for the ri; the ki are optimized by a heuris-

tic search procedure. Once optimal bit rates and vector dimensions are computed, optimal

VQ codebooks are constructed from training data using the Linde-Buzo-Gray method [8, 9].

More details about the WVQ algorithm are given in [10, 2, 1, 11].
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III. APPLICATION TO OCEAN MODEL DATA.

This section describes the use of the WVQ algorithm on synthetic data generated by

a Bryan-Cox-Semtner global ocean circulation model running on the Connection Machine

CM-200 at the Los Alamos Advanced Computing Laboratory (ACL) [12, 13]. The model

is computed on a 320 x 768 grid at 20 depth levels; boundary conditions are given on a

three-dinaensional bottom topography with 80 islands. The data used in the compression

experiments was the surface temperature field (no depth components), taken at three-day

intervals over a decade's worth of simulation. Time-frames from the first year of the simula-

tion were used for training data, and the resulting WVQ algorithm was then tested on frames

from the last year of the simulation, i.e., on data similar but not identical to the training

data. We feel this is a valid test since it is similar to the manner in which the algorithm will

be used in practice.
The two-dimensional data frames were transformed with a four-level octave-scaled DWT

decomposition. Since the model is periodic in the east-west direction, periodic boundary

conditions were used along parallels of latitude ("rows"). However, due to the la& of con-

tinuity between the north and south edges of the grid, symmetric (i.e., reflected) boundary

conditions were used along meridians of longitude ("colunms'). Because the DWT is most

easily computed on a rectangular grid, the temperature data was extended across the con-

tinental landmasses before transforming. A simple approach like zero-padding of the data

would be undesirable because it would induce a large jump discontinuity around the coast-

lines; this would show up as added variance in the highpass-filtered DWT subbands and

would therefore reduce the compressibility of the high-frequency signal components in the

transform domain. For this reason we used a continuous extension of the data given by linear

extrapolation from coast to coast along parallels of latitude. This still leaves a "corner" at

the coastlines in the extended data; since the initial data field is extremely smooth, this

corner results in a slight increase in energy in highpass-filtered subbands. It is not yet clear

whether this added variance is significant alongside the variance naturally present in the

data. We are currently looking into using smoother two-dimensional extrapolation schemes

for this task.

Two different approaches were taken to quantizing the time-series data generated in the

simulation: nonpredictive and predictive coding. In the nonpredictive scheme, each frame

is treated as a separate image and compressed accordingly using the WVQ method. In

predictive coding, a prediction of each frame is made based on past frames and subtracted

from the current frame, resulting in a two-dimensional residual image, which is compressed

and stored. The image sequence is decoded from the first frame in the sequence and the

residuals. We used a simple first-order predictor in this scheme; i.e., the prediction of a given

frame is just equal to the quantized value of the previous frame. Block diagrams for the

transmitter and receiver in this predictive encoding/decoding system are given in Figures 3

and 4. The experiment assumed that the first frame in the sequence is transmitted with

nonpredictive quantization, and the compression ratios reported are those of the subsequent

residuals.

For both the nonpredictive and predictive schemes, WVQ coders were designed for bit

rates, R, ranging from 2.0 to 0.25 bpp. Since the original data was 32 bpp, the corresponding

compression ratios range from 16:1 to 128:1. Encoding complexities, Q, were varied between
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16a and 64c_. The optimal codebook sizes and vector dimensions for each combination of R

and Q were computed by the WVQ design algorithm described in Section II. Bit allocation

results for the 13 subbands are presented in Tables I and II for R = 0.5 and 0.25 bpp ill

terms of vector dimensions, ki, and codebook sizes, Ni. Note that as the bit rate decreases,

the highest frequency subbands are quantized more heavily or discarded altogether and

remaining high-frequency subband vector dimensions typically increase. Vector dimensions

also increase as the upper bound on complexity increases. Bit allocation for the residual

subbands in Table II is similar to that for the nonpredictive scheme, although much less of

the quantizer resources (i.e., far fewer bits) are allocated to the lower frequency subbands in

the predictive scheme. This means that the first-order predictor effectively predicts the low-

wavenumber modes of the model, indicating that these modes are evolving slowly compared

to the sampling rate for archiving data.

Quantizer performance is measured in terms of signal-to-noise ratio (SNR),

2

G (dB)SNR = 101og,o -25
O"e

is the quantization error variance. The average SNRis the signal variance and Gwhere 0 s

in dB for the test data is shown in Figures 5 and 6 for various values of R and Q. This

diagram illustrates the various tradeoffs involved in the selection of R and Q. At a given bit

rate, R, note that a higher SNR is possible using an encoder with higher complexity, Q; i.e.,

higher subband vector dimensions, ki, and correspondingly larger codebook sizes, Ni. Note
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Table I: Vector Dimension and Codebook Size Assignments (k, N) for R = 0.5 bpp and

R = 0.25 bpp, Nonpredlctive Coding.

Subband ,,,00

Subband ,,,01

Subband ,,,10

Subband ,,,11

Subband ,,01

Subband ,,10

Subband ,,11

Subband ,01

Subband ,10

Subband ,11

Subband 01

Subband 10

Subband 11

R = 0.5 R = 0.25

Q=64c_ Q=32c_ Q=16a Q=64c_ Q=32c_ Q=16e,

(1,511) (1,493) (1,308)
(1,132) (1,119) (1,91)
(1,93) (1,103) (1,75)
(1,48) (1,58) (1,41)
(4,723) (2,247) (2,133)
(4,261) (2,61) (2,41)
(4,134) (4,76) (2,25)
(8,373) (8,177) (4,68)
(8,i9) (8,13) (8,8)
-- -- (8,2)
(8,74) (8,42) (8,22)

(1,251) (1,251) (1,251)

(1,32) (1,31) (1,32)

(1,15) (1,17) (1,18)

(1,8) (1,7) (1,7)

(4,377) (4,382) (4,295)

(4,16) (4,16) (4,17)

(4,4) (4,4) (4,4)

(8,176) (8,176) (8,132)

(8,4) (8,4) (8,4)

Table II: Vector Dimension and Codebook Size Assignments (k, N) for R = 0.5 bpp and

R = 0.25 bpp, Predictive Coding.

Subband ,,,00

Subband ,,,01

Subband ,,,10

Subband ,,,11

Subband ,,01

Subband ,,10

Subband ,,11

Subband ,01

Subband ,10

Subband ,11

Subband 01

Subband 10

Subband 11

R = 0.5 R = 0.25

Q=64c_ Q=32c_ Q=16a Q=64o_ Q=32c_ Q=16c_

(1,14) (1,10) (1,16)

(1,21) (1,15) (1,23)

(1,26) (1,20) (1,28)

(1,35) (1,28) (1,35)
(4,383) (4,235) (2,84)

(4,423) (2,125) (2,86)

(4,305) (4,185) (2,64)

(8,276) (4,126) (4,62)

(8,239) (8,138) (8,54)

(8,97) (8,51) (8,24)

(8,30) (8,12) (8,11)

(1,2) (1,2) (1,4)
(1,3) (1,4) (1,6)
(1,5) (1,6) (1,9)
(1,8) (1,10) (1,14)
(4,207) (4,198) (4,120)
(4,293) (4,257) (4,140)
(4,93) (4,109) (4,87)
(8,461) (8,209) (8,78)
(8,206) (8,145) (8,65)
- (8,3) (8,12)
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Figure 5: SNR Measurements of Quantized Temperature Data, Nonpredictive.
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Figure 6: SNR Measurements of Quantized Temperature Data, Predictive Coding.

2O



that tile complexity canbe increasedin this mannerwhile the subbandbit rates, ri, remain

nnchanged since
log 2 i\_

ri - ki

Increasing the encoding complexity results in an encoder with a more time-consundng code-

book lookup but does not affect decoder performance. As the bit rate increases, we see from

Figure 5 that tile gain in SNR achieved by increasing the encoding complexity becomes more

significant. For a fixed R and Q, comparison of Figures 5 and 6 shows that the predictive

scheme achieves a gain on the order of 1-4 dB over nonpredictive coding. The improvement

in coding gain is more pronounced at lower bit rates and higher complexities, since the resid-

ual coding scheme is better able to exploit higher limits on encoding complexity at low bit

rates than the nonpredictive scheme.

IV. APPLICATION TO MULTISPECTRAL DATA.

This section discusses the application of WVQ to the compression of nmltispectral im-

agery. Since each spectral band is a separate monochromatic image, the approach is to code

each of the bands by two-dimensional WVQ using symmetric boundary conditions. The

bit-allocation is performed for the various spectral components simultaneously and hence

the coding of each spectral component is not viewed as a separate two-dimensional problem.

The multispectral problem requires a modification to the WVQ design algorithm dis-

cussed in Section II since the rate and complexity are expressed in terms of multidimensional

pixels. For the case of L spectral components the system design procedure entails minimizing

over the ki and ri subject to

L • mi

1 < QL . mi

ri>__O

ki E K_

where I'(i denotes a prespecified set from which ki must be selected.

(6)

(7)

(8)

(9)

The optimization

is performed over all of the two-dimensional subbands generated from all of the spectral

components.

Multispectral image WVQ was considered for the application of compressing Landsat

Thematic Mapper (TM) data. Such data consist of seven 8-bit spectral bands (three visible,

three infrared, and one thermal) at a ground sample distance of 28.5 meters. Four data sets

were used in training the coder: Albuquerque, NM (2984 x 3356); Cairo, Egypt (2945 x 3320);

Los Alamos, NM (2984 x 3254); and Mexico City, Mexico (5965 x 6967). The performance

of the coder was evaluated in terms of results obtained by compressing a (2976 x 3552) scene

from the Moscow, Russia, area containing both urban and agricultural areas. The resulting
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Table III: RMSE Quantizer Performance as a Function of Compression Ratio and Complex-

ity.

Q=8o_ Q=16c_ Q=32a Q=64c_

16:1 3.04 2.35 1.92 1.70

32:1 3.06 2.63 2.43 2.26

64:1 3.85 3.51 3.32 3.24

128:1 4.76 4.71 4.58 4.56

root mean-square error (RMSE) for sixteen combinations of bit rate and encoding complexity

are tabulated in Table III. The compression ratios reported are relative to 56 bits/pixel in

the original data and assume that the bit rates satisfy

1 3-" ri _R with L=7 (lO)
L ,'-7'..mi

The additional gain available from entropy and run-length coding is not included.

It is interesting to compare these results to those obtained by another wavelet-based

compression technique. In [14] Landsat TM images were compressed via a subband de-

composition of each spectral component by a 7-tap nonperfect reconstruction filter bank;

each subband was coded with uniform scalar quantizatiQn followed by Huffman and zero-

run-length coding. The experiment was repeated with an image-dependent Karhunen-Loeve

transform (KLT) in the interband direction, which provided noticeable coding gain at the

expense of computational complexity. The WVQ RMSE results depicted in Table Ill appear

to lle between these two previous approaches, although any comparisons must be qualified by

the fact that the numerical results in these two papers were obtained from different imagery

(Kuwaiti oil fields in the case of [14]). For instance, Table III shows that 32:1 compression

(1.75 bpp) with a complexity of Q = 64a yields an average RMSE per band of 2.26, or a

little over 2 bits of error. The closest comparable value for non-KLT coding in [14] is a MSE

of 40.02 at 2.51 bpp; dividing the MSE by 7 and taking a square root gives an average RMSE

per band of 2.39, which is a slightly greater error at a higher bit rate than our result. With

interband KLT coding, [14] reports a MSE of 25.11, or an average RMSE of 1.89, at 1.55

bpp; this is a lower distortion at a lower bit rate than our result. We are currently currently

working on incorporating interband KLT coding with the WVQ compression method.

The motivation for our investigation of TM data compression is the need to store and

process large amounts of data for postprocessing applications. Using the software package

SPECTRUM [15], developed by Los Alamos National Laboratory and the University of New

Mexico, we are able to use a desktop workstation running Unix and X-windows to analyze

and categorize multispectral data that has been clustered into 256 clusters using a variant of

the k-means algorithm. SPECTRUM can manipulate the color map for the computer display

using any transformation of the clustered data, and can display cluster position as a two-

dimensional scatter plot. Using these features, users are able to categorize data by selecting

areas with a known type of land cover, causing all associated pixels in the image to be given

the same pseudocolor representation. Of great interest to us is the robustness of SPECTRUM
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data clustering when applied to data that has first been compressed by the WVQ algorithm.

While visual quality of pseudocolor visualizations remains good after compression by as

much as 32:1, it remains to be determined how much quantization distortion SPECTRUM

can tolerate for tasks like Level 1 Land Use Categorization. We are attempting to establish

quantitative distortion criteria based on the analysis of classification error presented in [15],

which is based on computing levels of confidence for classifications done on clustered data.
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